Characteristics of manganese supported on hydrous TiO_2 catalysts for the selective catalytic reduction of NO_x with ammonia

Selective catalytic reduction (SCR) is a well-established technology which controls NO_x emission. Recently, Mn based catalysts are widely accepted as efficient catalysts in SCR reaction, and various kinds of materials were used as support. In this study, we focused on hydrous titania with highly porous structure and a large surface area, which is regarded as potential support materials. Mn oxide supported on two different groups of titania, hydrous or crystalline titanium oxide, were investigated for the SCR reaction. Mn supported on hydrous TiO₂ catalyst exhibited higher NO_x conversion over wide temperature range as well as the suppressed formation of N₂O compared to Mn supported on crystalline TiO₂. Also, Mn/hydrous TiO₂ showed relatively lower performance in ammonia oxidation than Mn/crystalline TiO₂ which is regarded as the side reaction. Combined several characterization results indicates that manganese species are more strongly interacted with hydrous TiO₂ than crystalline TiO₂, resulting in different redox behavior and oxidation state of Mn oxides. It can be concluded that the activity and selectivity of Mn/TiO₂ catalysts in NH₃ SCR reaction were affected by initial state of titania support.