Effect of Alkali Metal Salts on Decomposition of Ionic Liquid like Organic Salt

<u>조경철</u>, 고은미¹, 백숭욱², 서대현, Tian Hong Lin, 조성준[†] 전남대학교; ¹국방과학연구소; ²한국과학기술원 (sjcho@chonnam.ac.kr[†])

 N^1,N^1,N^2,N^2 -tetramethylethane-1,2-diamine based ionic salts (TMEDA), N^1,N^1,N^2,N^2,N^2 -hexamethylethane-1,2-diaminium dicyanamide (HMEDA-(DCA)₂) was prepared following the feasible chemical reaction route. The chemical structure of the HMEDA-(DCA)₂ was confirmed using 13C NMR spectrum and elemental analysis. Its viscosity was controlled lower than 5 cP at room temperature, which was critical for propellant application. The ignition delay of 40wt% HMEDA-(DCA)₂ solution was decreased to 20–30 msec dramatically using alkali metal salts, Li(CH₃COO), Mg (CH₃COO)₂ and Ca(CH₃COO)₂ as a co-catalyst when white fume nitric acid was utilized as an oxidizer.