Tungsten-promoted SnO₂ with highly ordered mesostructure as an efficient catalyst for deep oxidative desulfurization

<u>이정화,</u> 홍경희, LI CHENGBIN, 박수빈, 김지만[†] 성균관대학교 (jimankim@skku.edu[†])

Oxidative desulfurization of model oil has been studied using mesoporous WO_3/SnO_2 as catalyst. A series of WO_3/SnO_2 catalysts were prepared by loading WO_3 (10 wt% ~ 30 wt%) on mesoporous SnO_2 materials through wet impregnation method. The catalytic activity of samples was tested by oxidative desulfurization of DBT (dibenzothiophene) from model oil with H_2O_2 as the oxidant. The result showed that the catalytic activity of samples was improved with increasing the content of WO3 from 10 wt% to 20 wt% and decreased by further addition. And among all the catalysts, 20 wt% WO_3/SnO_2 exhibited the highest activity, due to the amount of active W species were more than other samples, which could exhibited the WO_3 (\leq 20 wt%) was highly dispersed on the surface of mesoporous SnO_2 and the the strong interaction between WO_3 and SnO_2 . Additionally, there was no decrease in activity of the used catalyst after 5 times recycle–test which indicated the reusability of catalyst.