New preparation method of potassium–based δ -alumina sorbents for CO2 capture at low temperatures.

<u>조성빈</u>, 이수출, 채호진, 조민선, 권용목, 박명곤, 임호영, 김재창[†] 경북대학교 (kjchang@knu.ac.kr[†])

 CO_2 capture capacity of the potassium-based γ -alumina sorbents decreased dramatically during the multiple tests at sorption and regeneration temperatures of 60°C and 200°C, respectively. This result is due to the formation of by-product [KAl(CO₃)₂ (OH)₂], which is an inactive materials. To improve the regeneration capacity during the multiple tests, we used the δ -alumina instead of γ -alumina as a support materials. A KAl (D)I40 sorbent was prepared by impregnation of δ -alumina with 40 wt% K₂CO₃ and a KAl(D)I40T sorbent was prepared by new preparation method. The regeneration capacity of the KAl(D)I40 sorbent is 72.6%, even though potassium-based sorbent using δ -alumina has better regeneration properties than that using γ -alumina as a support materials. On the other hand, the regeneration capacity of the KAl(D)I40T sorbent is 96.4%, resulting from the reduction in the formation of KAl(CO₃)₂(OH)₂ during the CO₂ sorption. Based on these results, we found that the regeneration capacities of the potassium-based alumina sorbents are affected by the structure of alumina and the preparation method.