Stabilization of Histidine-tagged Green Fluorescent Proteins in Organic Environment Using Nitrilotriacetic acid-End-Functionalized Poly (poly ethylene glycol) ethyl ether methacrylate]

<u>김봉수</u>[†], 허광선, 하은주¹, 백현종¹ 경남정보대학교; ¹부산대학교 (kimbsoo@kit.ac.kr[†])

Non-covalent bioconjugation method was used to stabilize histidine-tagged green fluorescent protein (His₆-GFP). Well-defined nitrilotriacetic acid (NTA) end-functionalized Poly[poly ethylene glycol) ethyl ether methacrylate] was prepared using the initiator containing *tert*-butyl protected NTA moiety by atom transfer radical polymerization (ATRP). Well-defined NTA-p(PEGMA) was characterized using ¹H NMR and GPC. Using end-functionalized polymers, stabilization of His₆-GFP was attempted by forming micellar aggregates in solution. D-values for the stabilization of His₆-GFP were determined using photoluminescent spectroscopy. Micellar aggregates were analyzed using transmission electron microscopy (TEM) and dynamic light scattering (DLS).