

<u>정재민</u>, 박견주, 석승환, 최봉길¹, 김도현[†] 한국과학기술원; ¹강원대학교 (dohyun.kim@kaist.ac.kr[†])

We report a simple and scalable process to synthesize the core-shell nanostructure of $MoS_2@N$ -doped carbon nanosheets ($MoS_2@C$), in which polydopamine is coated on the MoS_2 surface and then carbonized. Transmission electron microscopy and Raman spectroscopy reveals that the as-synthesized $MoS_2@C$ possesses a nanoscopic and ultrathin layer of MoS_2 sheets with a thin and conformal coating of carbon layers (~3 nm). The $MoS_2@C$ demonstrates a superior electrochemical performances as an anode material for lithium ion batteries compared to exfoliated MoS_2 and bulk MoS_2 samples. This unique core-shell structure is capable of excellent delivery Li^+ ion in charging -discharging process: a specific capacity as high as 1239 mA h g⁻¹, a high rate of charging-discharging capability even at a high current rate of 10 A g⁻¹ while retaining 597 mA h g⁻¹, and a good cycle stability over 200 cycles at a high current rate of 2 A g⁻¹.