Oxygen Electrocatalysts Based on Ordered Mesoporous Manganese Oxides with Different Oxidation States and Crystal Phases

> <u>사영진</u>, 주상훈[†] 울산과학기술대학교 (shjoo@unist.ac.kr[†])

Ordered mesoporous manganese oxides with different crystal structures and oxidation states (Meso-MnO₂, Mn₂O₃, Mn₃O₄, and MnO) were prepared by nanocasting KIT-6 mesoporous silica. Oxygen electrocatalytic activity of the Meso-MnO_x was investigated in 0.1 M KOH. Meso-MnO₂ and Mn₂O₃ showed higher oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities than meso-Mn₃O₄ and MnO. Contrary to the previous report that revealed low ORR and OER activities for β -MnO₂, relatively higher oxygen electrocatalytic activity was observed with Meso-MnO₂, which can be attributed to its slightly lower oxidation state below 4 (~3.9), and unique disordered (or mixed) crystal phase. Comparing the Meso-MnO and Mn₃O₄, the former showed better ORR activity than the latter, demonstrating the advantage of the mixed phase in Meso-MnO for facilitating oxygen electrocatalytic activity. *In-situ* XAS showed noticeable potentialdependent change in oxidation state for Meso-MnO_x catalysts, suggesting the oxygen electrocatalytic reactions invoke *in situ* phase transformation of the catalyst surface.