Preparation of porous SnO₂:Ga nano powder in a micro drop/bubble fluidized reactor

<u>임대호,</u> 이승호, 신승훈, 유동준, 이찬기¹, 강형구², 강 용[†] 충남대학교; ¹고등기술연구원; ²Gentec (kangyong@cnu.ac.kr[†])

SnO₂ has been understood as one of promosing materials to be developed as gas sensing materials by detecting several gases in various different processes. The gas sensing material should have wide surface area to detect the extremely dilute gas. The size of powder should be reduced, in addition to the increase in the porosity, to increase in the effective surface area of the powder. Thus, SnO₂ powder were prepared in a MDBFR, in which the powder could be prepared continuously and effectively. To control the microstructure of SnO₂, Ga³⁺ was doped into the lattice of host material. The prepared SnO₂:Ga were analyzed by means of SEM, XRD, DRS and BET. The XRD analysis of asprepared powder confirmed that the powder were mainly single crystal structures of SnO₂:Ga, regardless of doping level. The size of SnO₂:Ga was in the range of 10~50 nm depending on the preparation conditions, which were easily controlled by adjusting the flow rates of micro drops and bubbles in the reactor. The XRD and DRS analyses indicated that Ga³⁺ was successfully doped into SnO₂ lattice. The crystallite size of as-prepared SnO₂:Ga were spherical and wrinkled with a furrowed surface.