Effect of synthesis conditions and calcination temperature on the structural and electrochemical properties of $LiN_{0.8}C_{0.1}Mn_{0.1}O_2$ as a positive electrode for Lithium-ion batteries

<u>Vu duc luong</u>, 이재원[†] 단국대학교 (jwlee7@dankook.ac.kr[†])

Nickel-rich layered metal oxide materials are prospective cathode materials for lithium ion batteries due to the relatively higher capacity and lower cost than LiCoO₂. In this work, spherical Ni_{0.8}Co_{0.1}Mn_{0.1}(OH)₂ precursors are successfully synthesized by coprecipitation method. The homogeneous and spherical Ni_{0.8}Co_{0.1}Mn_{0.1}(OH)₂ precursors had a high tap-density of 1.91 g/cm³. LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ was then prepared as a cathode material for lithium-ion battery from this precursor by reaction with 5% excess LiOH.H2O at 800oC in air. The cathode material had well-ordered layer-structure and tap-density of 2.35 g/cm³. The crystal structure, morphology and electrochemical properties of the Ni_{0.8} Co_{0.1} Mn_{0.1} (OH)₂ precursors and LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ were investigated by using X -ray diffraction, scanning electron microscopy, charge-discharge test and cyclic voltammetry method. In the voltage ranges of 3.0 - 4.3V, the initial discharge capacity of LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ at 0.1 C rate was 193 mAh g⁻¹. The cell delivers a capacity of 170.373 mAh g⁻¹ at 1st cycle and 153.71 mAh g⁻¹ at 100th cycle with 90.41 % of capacity retention at 1C discharge.