Synthesis of highly ordered mesoporous CeO_2 and water-gas shift reaction over $Cu_xCo_{3-x}O_4/mesoporous CeO_2$ catalyst

<u>LI CHENGBIN</u>, 이정화¹, 홍경희¹, Sivaranjani Kumarsrinivasan¹, 오화용¹, 조혜진¹, 김지만[†] 성균관대학교; ¹성균관대학교 화학과

We report on the low water-gas shift (WGS, CO + $H_2O \rightarrow H_2 + CO_2$) activity of $Cu_xCo_{3-x}O_4$ supported on highly ordered mesoporous ceria oxide with high surface area and a large pore volume. The preparation method was via a nano-replication method using a KIT-6 template to get highly ordered mesoporous CeO_2 support, then loading $Cu_xCo_{3-x}O_4$ on the meso-CeO₂ by an incipient wetness impregnation. The structure of the catalysts and the WGS reaction intermediate were characterized using powder X-ray diffraction (XRD), nitrogen sorption & adsorption isotherms, scanning electron microscopy (SEM), temperature programmed surface experiments. A 20 wt% $Cu_xCo_{3-x}O_4$ /meso-CeO₂ catalyst displayed the highest catalytic activity among all the prepared catalysts. Beside high activity, the 20 wt% $Cu_xCo_{3-x}O_4$ /meso-CeO₂ catalyst also exhibited the stability under WGS conditions compared to 20 wt% $Cu_xCo_{3-x}O_4$.