Preparation of Al₂O₃-encapsulated Ru Nanoparticle Catalysts for the Hydrodeoxygenation of Guaiacol

Indriyati^{1,2}, Adid Adep Dwiatmoko¹, 최재욱¹, 서동진¹, 하정명^{1,†} ¹KIST; ²UST (jmha@kist.re.kr[†])

 Al_2O_3 -encapsulated Ru nanoparticle (Ru@Al_2O_3) catalysts were synthesized by a simple one pot synthesis method using a PVP-stabilized Ru colloid solution. Because the alumina-encapsulated Ru nanoparticles havethe more metal-support interface, the catalytic activity of Ru@Al_2O_3 was significantly higher compared to the conventional alumina-supported Ru catalysts (Ru/Al_2O_3) for the liquid phase hydrodeoxygenation of Guaiacol, demonstrating three times higher conversion and four times higher oxygen removal. Ru@Al_2O_3 catalyst exhibited good selectivity to the production of cyclohexene, an important intermediate in various industrial processes.