Development of a computer-aided analysis tool for evaluation of CO₂ capture and conversion processes

<u>노고산</u>, 임형묵, 이재형[†] KAIST (jayhlee@kaist.ac.kr[†])

To evaluate CO₂ capture and conversion processes for reduction of CO₂ emission, it should be analyzed in various aspects. Firstlyl, CO₂ reduction feasibility should be verified by calculating carbon footprint (mass of CO₂ per mass of product) of overall processes. Second aspect is economics, which is about profitability from product sales. Lastly, being implemented to CO₂ sources, the amount of annual CO₂ reduction (mass of CO₂ per time) should be analyzed. As a result, complicated calculation and a large number of required data sets are the obstacles in the evaluation. To overcome these, in this work, a computer-aided analysis tool for evaluation of CO₂ capture and conversion processes is introduced. With a systematic guideline, intuitive interface, and massive database, it helps users to evaluate a given CO₂ capture and conversion process very conveniently. Especially, a concept of a superstructure network is applied, so users can analyze multiple processing pathways at the same time. As exemplary systems, several CO₂ conversion processing pathways for production of methanol, acetic acid, and synthetic fuel are introduced, and their evaluation results are discussed.