Hybrid TiO₂-SiO₂ structure derived from rice straw and enhanced photocatalytic properties for dye wastewater treatment

<u>황경준</u>, 권영준, 정용주, 박미리, 박주영¹, 최원석[†] (재)철원플라즈마산업기술연구원; ¹(재)녹색에너지연구원 (wschoi@cpri.re.kr[†])

Rice straw, an agricultural bioresource, is utilized as a biotemplate in order to synthesize a hybrid TiO_2-SiO_2 structure, and the resulting products were used for removing hazardous methylene blue dye from aqueous solutions. Samples of the as-prepared hybrid TiO_2-SiO_2 structure are characterized by thermal gravity analysis, field emission scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen gas adsorption/desorption measurement, and UV/vis spectroscopy. The results obtained show that the hybrid TiO_2-SiO_2 structure possesses both anatase and rutile phases, along with

amorphous SiO2. Its specific surface area is determined to be 141.1 m²/g, and its pore size to be 3.77 nm. Light harvesting within the visible–light range is found to be enhanced by the use of this hybrid TiO_2 -SiO₂ structure. Moreover, the photocatalytic activity and stability are also improved, as demonstrated by the degradation of methylene blue dye under UV irradiation.