Mesoporous MgO-TiO₂ Adsorbents for CO₂ Capture

<u>Hiremath Vishwanath</u>, 서정길[†] 명지대학교 (jgseo@mju.ac.kr[†])

MgO has been extensively reported as an efficient solid CO₂ sorbent. However, it is still challenge to make MgO stable under TSA (Thermal–Swing Adsorption) operation because high temperature is required for regeneration of MgCO₃ to MgO. In this work, TiO₂ stabilized MgO sorbents were investigated as candidate for CO₂ capture. Compositional modifications are carried out to enhance the CO₂ sorption performance of MgO–TiO₂ sorbents. It was observed that the phase was transformed in the sequence of MgTiO₃ (Mg/Ti=0.5-2.0) \rightarrow MgO–MgTi₂O₄ (Mg/Ti=3.0-4.0) \rightarrow MgO–Mg₂TiO₄ (Mg/Ti=5.0), and the CO₂ adsorption increased in the order MgTiO₃ < MgO–Mg₂TiO₄ < MgO–MgTi₂O₄. High surface area (111.4 m²/g), large pore volume (0.45 cm³/g), and appropriate basic sites of MgO–MgTi₂O₄ were beneficial for CO₂ adsorption. This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant number: NRF–2013R1A1A2060638).