Preparation of a compact microchannel membrane module for hydrogen purification

<u>오덕규</u>^{1,2}, 이춘부^{1,2}, 이성욱^{1,2}, 진민호^{1,2}, 황경란², 이동욱², 이관영¹, 박종수^{2,†}
¹고려대학교; ²한국에너지기술연구원
(deodor@kier.re.kr[†])

This study investigates a compact Micro-channel-reactor (MCR) type membrane module assembled by the diffusion bonding method at the low-temperature (450 °C) for hydrogen purification. In order to perform the low-temperature diffusion bonding of the membrane module, the surfaces of SUS plates were modified with blasting, Ni-Cu deposition and thermal treatment in sequence, resulting in commissure dramatically increased the average-surface roughness (Ra) and surface-area. The surface modified plates made them well bonded at low-temperature. The prepared compact MCR type membrane module showed that the hydrogen flux was 18.3 ml cm⁻² min⁻¹ at the pressure difference of 0.1 MPa with a H₂/N₂ selectivity was over 1100. The hydrogen purification test using a 40% CO₂/60% H₂ mixture gas confirmed that the MCR type membrane module is capable of separating hydrogen with concentration of more than 99% at 400 °C, pressure difference 0.5 MPa and the feed gas rate of 1.5 L min⁻¹.