Thermodynamic and structural analyses of pure SF_6 and $SF_6 + N_2$ gas hydrates formed in various reaction media

<u>고 결</u>, 서용원[†] UNIST (ywseo@unist.ac.kr[†])

 SF_6 is one of the most potent greenhouse gases due to its remarkably high global warming potential which is 23900 times larger than that of CO_2 and long lifetime in the atmosphere. Accordingly, SF_6 should be captured from the emission sources of industries. In this study, hydrate-based SF_6 separation was suggested as a novel method. Three-phase (hydrate (H)-liquid water (Lw)-vapor (V)) equilibria of pure SF_6 and SF_6+N_2 hydrates formed in various reaction media (bulk water, hollow silica, and porous silica gel) were measured to determine hydrate stability conditions. The inclusion of SF_6 in the hydrate phase resulted in significant equilibrium pressure reduction. The reaction media used in this study did not affect the stability conditions of SF_6 and SF_6+N_2 hydrates. The separation efficiency of SF_6 was examined through gas chromatography. The structures of the pure SF_6 and SF_6+N_2 hydrates were identified via powder X-ray diffraction and were found to be sII for all cases. The experimental results obtained in this study will be helpful to understand the hydrate-based SF_6 separation process.