Molecular Dynamics Simulations of Viscosity Evolution of Aqueous Amine CO₂ Capture Solutions: Monoethanolamine versus Piperazine

> <u>유택희</u>, Wei Cui, Yves Lansac¹, 장윤희^{2,†} 광주과학기술원; ¹Université François Rabelais; ²대구경북과학기술원 (yhjang@gist.ac.kr[†])

Chemical absorption of CO_2 by aqueous amine solutions is currently the most mature technology to capture CO_2 from post-combustion flue gases. A density-functional-theory-based fast virtual screening of the CO_2 -capture performance has been developed for various aqueous amine solutions such as monoethanolamine (MEA) and piperazine (PZ). An important issue in developing high-performance amine solutions for CO_2 capture is that the viscosity of amine solutions containing PZ increases rapidly with the CO_2 loading. A new design of a fast- CO_2 -absorbing component as fast as PZ but not as viscous as PZ is therefore desirable. For this purpose, using molecular dynamics simulations combined with Green-Kudo (GK) and Stokes-Einstein (SE) equations, we compute the transport behavior (viscosity and diffusivity) of aqueous PZ solution as a function of CO_2 loading at different conditions and compare our findings to the experimental data. The calculation indicates that the SE method predicts lower viscosities than the GK method. The CO_2 -loading-dependent viscosities calculated with the GK method reproduce the experiments.