NaNO₃-(Na, Li)₂CO₃ promoted MgO for post-combustion CO₂ absorbent

<u>곽진수</u>, 김강영, 오경렬, 안영인, 권영욱[†] 성균관대학교 (ywkwon@skku.edu[†])

Currently, materials based on MgO are widely investigated for promising intermediate CO₂ absorbents for the following reasons. Decomposition temperature of magnesium carbonate is lower than that of all of the alkali and alkaline earth metal carbonates. In addition, the theoretical CO₂ absorption capacity of MgO is the highest among all of the absorbents investigated so far. However, large lattice energy of MgO makes both CO₂ absorption and desorption kinetics slowly. In order to enhance CO₂ absorption and desorption properties of MgO, NaNO₃-M₂CO₃ (M=Na, Li) promoted MgO was investigated. Our study proposes that CO₂ absorption occurs through formation of double carbonate and desorption through reverse reaction. In operating condition, phase change occurs in NaNO₃ turning it from solid to liquid. Na₂CO₃ and Li₂CO₃ dissolved in liquefied NaNO₃ provide CO₃²⁻ seed to MgO making it into carbonate easily. As a result, the reaction kinetics of this absorbent is faster than that of MgO + CO₂.