Air-Stable, Hole-Contuctor-Free High Photocurrent Perovskite Solar Cells with CH₃NH₃PbI₃-NiO Nanoparticles Composite

왕유생, 노원엽, 양화영, Tahmineh Mahmoudi, 서승희, 이동헌, 한윤봉[†] 전북대학교 (ybhahn@jbnu.ac.kr[†])

Here, we report an air-stable, hole-conductor-free (HCF), high photocurrent PSC based on CH₃NH₃PbI₃-NiO nanoparticles (MAPbI₃-NiO NPs) composite. The composite solution contains highly dispersed NiO NPs in solution of CH₃NH₃I (MAI) and PbI₂ in dimethylformamide. By introducing the CH₃NH₃PbI₃-NiO composite into the active layer, the HCF-PSCs with FTO/c-TiO₂/mp-TiO₂/MAPbI₃-NiO/Au architecture have been fabricated under ambient conditions. Compared to the power conversion efficiency (PCE) of MAPbI₃-based HCF-PSC (i.e., 5.43%), the MAPbI₃-NiO NPs composite-based HCF-PSC swithout encapsulation showed remarkable air stability with retaining ~90 % of its original PCE and ~94% of both Jsc and FF for 60 days under ambient environment. XPS and IR spectra analysis revealed that Ni-O, Pb-O, C-O, Ni-N and N-NiO bonds attributed to strong chemical interaction between NiO and MAPbI₃ molecules enhance the air stability of MAPbI₃-NiO composite based HCF-PSCs.