Enhanced Electrochemical Performance of Nickel-rich Layered Oxide Battery Cathode via Surface Stabilization

<u>김재희</u>, PHAM QUANG HIEU, 황의형¹, 권영길¹, 이정규¹, 송승완[†] Dept. of Chemical Engineering & Applied Chemistry, Chungnam National University; ¹Leechem Co., Ltd

Nickel-rich three-components oxides of $\text{Li}(\text{Ni}_{1-x-y}\text{Co}_x\text{Mn}_y)\text{O}_2$ (NCM, $1-x-y \ge 0.5$) are one of the promising cathode active materials of high-energy density Li-ion batteries because of higher capacity, operation to higher charge cut-off voltage, lower cost and less toxicity than LiCoO₂. However, their high-voltage performance is difficult to

achieve due to limited anodic stability of conventional electrolyte above 4.2 V vs. Li/Li⁺. At such an aggressive charge condition, cathode–electrolyte interfacial reactions often cause a degradation of cathode material and electrolyte consumption by oxidative decomposition, resulting in a rapid performance fade. Here we report the surface stabilization of Nickel–rich LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ cathode to the charge cut–off voltage of 4.6 V by electrolyte control. Surface chemistry and its relation to cycling performance would be discussed.