Enhanced Faradaic Efficiency of Cu₂O Nanowire Photocathodes with Cu-incorporated Crystalline TiO₂ Shell for Photoelectrochemical CO₂ reduction

<u>이강하</u>, 이상헌¹, 이도창[†] KAIST; ¹이화여자대학교 (dclee@kaist.edu[†])

In this study, we report enhancement of faradaic efficiency of copper oxide (Cu₂O) nanowire photocathodes with copper-incorporated crystalline TiO₂ for photoelectrochemical CO₂ reduction to methanol. Cu₂O is promising p-type semiconductor for photocathode, but due to its self-corrosion the faradaic efficiency is low in CO₂ reduction. We protect Cu₂O surface from water by passivating crystalline TiO₂. In addition, we also adopt Cu species on TiO₂ surface to increase surface reactivity so that faradaic efficiency was enhanced to 44% from 26%.