Na₂WO₄/Mn/Mg/Ti/SiO_y mixed oxide catalysts for oxidative coupling of methane

<u>Rika T. Yunarti</u>^{1,2}, 하정명^{1,2,†}, 최재욱¹, 서동진¹ ¹KIST; ²UST (jmha@kist.re.kr[†])

A vast number of catalytic materials have been studied for the oxidative coupling of methane (OCM) reaction to achieve high selectivity of C₂ products at high methane conversion in order to make an approved for industrial application. In this study, Na₂WO₄/Mn/Mg_x/Ti_{0.05}/Si_{1-(x+0.05)}O_y mixed oxide-supported catalysts through one-pot synthesis were prepared to develop favorable mixed oxide properties as feasible component to determine the OCM performance and process efficiency. The reaction was performed in high temperature (750-850 °C) to obtain high C₂ yield, and the catalyst consisting Na₂WO₄/Mn/Mg_{0.05}/Ti_{0.05}/Si_{0.90}O_y exhibited the highest C₂ yield (19.3% at 775 ° C and 23.1% at 800 °C). The specific compounds of Na, W, and Mn play important role for highly active OCM catalyst. The addition of Mg into Na₂WO₄/Mn/Ti_{0.05}/Si_{0.95}O_y increased the concentration and dispersion of Mn at the catalyst surface to improve OCM performance.