Highly active cobalt based catalyst for N₂O decomposition in the presence of NO

Annually, Greenhouse gas emissions by nature and anthropogenic source have been increased. Among these gases, N_2O has a high global warming potential (GWP) which is 310 times higher than that of CO_2 . Therefore it is required to remove N_2O in aerosphere. It is reported that Co_3O_4 is active for N_2O decomposition due to its relatively high redox ability. However, Cobalt spinel synthesized by the co-precipitation method was significantly deactivated by NO at low temperature (below 400 °C). Many researchers reported that competitive adsorption between NO and N_2O inhibit the catalytic activity for N_2O decomposition. In order to overcome this phenomena, Co-Cu catalyst was prepared by co-precipitation method. This catalyst showed high activities in the presence of NO. The modified cobalt catalysts exhibit slightly decreased N_2O conversion compared to that of Co_3O_4 at low temperature when NO is introduced into reactor. To identify this phenomena, the prepared catalysts were characterized by XRD, BET, H_2 -TPR, O_2 -TPD, NO-TPD and XPS.