Black TiO₂ nanofibers as highly conductive electrode materials for sodium-ion batteries

<u>이나원</u>, 류원희[†] 숙명여자대학교 (whryu@sookmyung.ac.kr[†])

Sodium ion batteries have been spotlighted recently due to lower material costs, the abundance of sodium resources, and analogous electrochemical components with existing Li–ion battery systems. White anatase TiO_2 nanomaterials have been developed for suitable anode materials enabling facile insertion/extraction of Na ions. However, low electronic conductivity originated from large electronic band gap (~3.2eV) and narrow interstitial sites to accommodate large Na ions often limit the battery performance. In this regard, new class of TiO_2 material called 'black TiO_2 ' is more attractive owing to its flexible structural feature and narrower band gap of approximately 2.2eV and consequent high electrical conductivity. In this work, we report highly conductive black TiO_2 nanofiber electron transfer in the structure (2) the glassy structure provides efficient intercalation of Na-ions in the structure. We also elucidate thermal effects on the structural and chemical feature of the samples.