Adsorption Studies of Lithium Ions onto 14-Membered Crown Ether-Clicked on Poly(Glycidyl Methacrylate) Nanofibers

<u>Russel Galanido</u>, Grace Nisola, Rey Eliseo Torrejos, Khino Parohinog, 이성풍, 정욱진[†] Department of Energy Science and Technology (DEST), Energy and Environmental Fusion Technology Center (E2FTC), Myongji University (wjc0828@gmail.com[†])

The efficiency of 14-membered crown ether-clicked on poly(glycidyl methacrylate) (PGMA-CE) nanofibers (NF) was investigated for Li⁺ capture. Adsorption studies at varied Li⁺ concentrations (7~70 mg/L), pH=11 and solid/liquid ratio of 1.25 mL/mg reveal its Langmuir-type Li⁺ adsorption. The PGMA-CE NF was highly selective towards Li⁺, against other cations like Na⁺, Mg²⁺, Ca²⁺ and Sr²⁺; the uptake followed the sequence: Li⁺ > Na⁺ > K⁺ > Mg²⁺ > Ca²⁺ > Sr²⁺. These results indicate the potential of PGMA-CE NF as a highly effective Li⁺ adsorbent. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2015R1A2A1A15055407).