CO₂ conversion for CO₂ reduction: Dry reforming of methane for acetic acid production

<u>임형묵</u>, 노고산, 이재형[†] 한국과학기술원 (jayhlee@kaist.ac.kr[†])

Recently, as CO_2 regulation gets much stricter due to global warming, CO_2 conversion has attracting much attention as one of the solutions to reduce CO_2 emissions. Dry reforming of methane (DRM) is one of the promising CO_2 conversion reactions because one of its feed, natural gas, is cheap and the high CO_2 feed ratio ($CH_4:CO_2=1:1$) can lead to large CO_2 reduction effect. Utilizing the produced syngas with a condition of $H_2/CO=1$, acetic acid can be synthesized via $2H_2+2CO\rightarrow CH_3COOH$. This study focuses on design and simulation of an acetic acid plant employing DRM technology. The overall process is developed by using a process simulator Aspen plus[®]. CO_2 life cycle assessment (LCA) and economic evaluation are carried out to examine the feasibility of the developed process.