CO₂ capture properties of M₂CO₃ (M=Na, K)-promoted MgO <u>곽진수</u>, 안영인, 권영욱[†] 성균관대학교 (vwkwon@skku.edu[†])

Among the various absorbents, MgO is a candidate of intermediate-temperature CO_2 absorbent because the decomposition temperature (400 °C) of its carbonate form is fitted with intermediate-temperature range. But it shows low reactivity with CO_2 because of its high lattice energy. In order to enhance the reactivity of MgO with CO_2 , MgO promoted by alkali metal nitrates has been studied by some researchers. However, these absorbents show bad CO_2 absorption and desorption cycle durability. So, the absorbent that has high cycle durability is needed to be investigated. Here, Na₂CO₃ or K₂CO₃ promoted MgO was studied. Na₂CO₃-promoted MgO shows stable CO_2 absorption and desorption cycle durability. But this absorbent shows low CO_2 desorption kinetics. On the contrary, K₂CO₃-promoted MgO shows bad cycle durability. But CO₂ absorption and desorption properties of the absorbents, Na₂- $_xK_xCO_3$ -promoted MgO with variation of the x-values is synthesized and its cycle durability was estimated. As a result, this absorbent shows good CO_2 absorption and desorption and desorption cycle durability was point with the shows are the the the the term of term of term of term of term of the te