The Efficiency and Characterization of CO₂ Reduction by Artificial Photosynthetic *Escherichia* coli Having Calvin-Benson-Bassham Cycle Isolated from *Rhodobacter sphaeroides*

<u>박주용</u>, 김영수, 김양훈¹, 민지호[†] 전북대학교; ¹충북대학교 (jihomin@jbnu.ac.kr[†])

In recent years, the CO₂ concentration was continually increase. *Rhodobacter sphaeroides*, one of non-sulfur purple photosynthetic bacteria, have an ability to CO₂ fixation. The recombinant *Escherichia coli* harboring 11 genes of Calvin cycle using a dual plasmid system; having 5 genes in Form I operon and having 6 genes in Form II operon. The Calvin cycle proteins were successfully expression in *E. coli* and the CO₂ reduction of recombinant *E. coli* transformed whole Calvin cycle was the highest. In addition, the increase of CO₂ reduction efficiency by treating FBP, RuBP, and Mg²⁺. TEM image and intracellular ATP and NAD⁺/NADH ratio results indicated the increase of activity. The protein expressions existed Mg²⁺ was strongly expression than treated IPTG. The amount of residual CO₂ in recombinant *E. coli* was lower than *R. sphaeroides*, however, per-cell base measurement was higher than *R. sphaeroides* using co-culture with *S. cerevisiae*. This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No: PJ01051502)" Rural Development Administration, Republic of Korea.