A facile synthesis of SnO₂/Co₃O₄/RGO aerogels for binder-free anode of Li-ion battery

<u>Vo Hoang Yen</u>, Van Hoa Nguyen¹, Charmaine Lamiel, Chinmoy Basak Mukta, 황진호, 심재 _진†

Yeungnam University; ¹Nha Trang University (jjshim@vu.ac.kr[†])

 $SnO_2/Co_3O_4/rGO$ aerogel was successfully fabricated through a facile one-step hydrothermal followed by a freeze drying. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) showed the macroporous network of rGO nanosheets and the uniformly distribution of SnO_2 and Co_3O_4 nanoparticles on rGO sheets with very small grain less than 5 nm. With high theoretical capacity of SnO_2 and the catalyst effect of Co nanoparticles to convert Sn to SnO_2 and prevent the decomposition of LiO₂ during the lithiation/delithiation process, result in enhance electrochemical performance, the $SnO_2/Co_3O_4/rGO$ aerogel can be used as a binder-free anode for Li-ion battery.