Surface control of metal nanocrystal for efficient CO_2 conversion using CO_2 and CO gas as surface ligand

In this study, we control the surface of metal co-catalyst for efficient CO_2 conversion by introducing of adsorbed gas ligand such as CO and CO_2 during the photo-deposition process on TiO_2 film. In order to examine the photocatalytic activity of surface tuned metal, we perform the CO_2 conversion reaction using varying metal/ TiO_2 samples. When CO act as gas ligand during the metal growth, resulting metal enhance to or inhibit photocatalysis for CO_2 conversion. Based on cyclic voltammetry and in-situ FTIR results, we expect that this contrasted result is strongly relevant to CO binding energy of metal. On the other hand, CO_2 conversion rate is increased regardless of type of metal, when CO_2 act as gas ligand. It is responsible for high adsorption property of metal with CO_2 , since specific facet, which has strong binding energy with CO_2 , is developed during the metal growth under CO_2 gas.