컬러-코딩된 하이드로젤 마이크로입자를 이용한 히스톤 변형의 다중검출

<u>역상윤</u>^{1,2}, 손충현², 김병선^{3,4}, 남은주³, 강해민⁵, 신효근^{5,6}, 김소현⁵, 이현주^{5,7}, 최정규^{8,9}, 임혜인 3,4 , 조일주^{5,6},

최낙워^{5,6,†}

¹고려대학교; ²KIST; ³KIST 뇌과학연구소 신경과학연구단; ⁴과학기술연합대학원 대학교 (UST) 생체신경과학과; ⁵KIST 뇌과학연구소 바이오마이크로시스템연구단; ⁶과학기술연합대학원 대학교 (UST) 의공학과; ⁷KIST 전자공학부; ⁸고려대학교 화공생명공학과; ⁹고려대학교 그린스쿨

The epigenetic modifications in gene expression are influenced by environment. The individualized genome-wide analysis has become a essential technology for recent trends in clinical field. We report 3-multiplex detection of changes in modified histones using Quantum Dot-encoded polyethylene glycol diacrylate hydrogel microparticles. We present the simultaneous detection of acetylation of lysine 9 of histone 3, di-methylation of H3K9, and tri-methylation of H3K9 from three distinct regions in the brain of cocaine-exposed mice. Our hydrogel-based epigenetic assay enabled relative quantification of the three histone variants from only $10~\mu L$ of each brain lysate per mouse. We proved that the cocaine treatment induced a significant increase of acetylation while a notable decrease in methylation in NAc.