$\label{eq:catalytic stability of Al_2O_3 modified ordered-mesoporous Co_3O_4 \ for \ Fischer-Tropsch \ synthesis: \ Effect \ of \ Al_2O_3 \ content$

The Al_2O_3 -modified ordered mesoporous Co_3O_4 catalysts (meso- Co_3O_4) were investigated for the Fischer-Tropsch synthesis (FTS) reaction to obtain a higher catalytic stability and activity by varying the ratio of Al_2O_3/Co_3O_4 from 0 to 15wt%. At an optimal content of Al_2O_3 pillaring material, a high CO conversion and stability were observed compared to the bare mesoporous Co_3O_4 . The $Al_2O_3/meso-Co_3O_4$ catalyst having a 5wt% Al_2O_3 showed a superior catalytic stability and activity due to a significantly increased structural stability with the help of the strongly interacted Al_2O_3 modifier in the Co_3O_4 mesopores even under reductive reaction condition. The different deactivation patterns according to the Al_2O_3 content on the meso- Co_3O_4 were explained using the results of XRD, TPR, BET and XAFS analysis.