Cu/ZnO/Al₂O₃ based Nanocatalysts with Core-shell Structure for MeOH Production

<u>최가혜</u>^{1,2}, 강영종², 문동주¹, 김상우^{1,†}

¹KIST; ²한양대학교

(swkim@kist.re.kr[†])

The Cu/ZnO/Al₂O₃ based catalysts have been used for production of MeOH-FPSO. The life time of catalysts and their behavior of deactivation, such as sintering, have great importance in the industry for optimal process condition.

To solve the deactivating problem, we tried to develop with nanocatalyst core-shell structure to γ -Al₂O₃ nanorods. For good catalytic performance, it is important to understand the catalysts of core-shell structure both γ -Al₂O₃ nanorods as a support and the Cu/ZnO as a catalyst. Since the γ -Al₂O₃ nanorods have excellent thermal and chemical stability, and high surface area, the nanorods are expected to significant role in the catalysts. Also Cu/ZnO is important role to produce MeOH.

The objective of this study is the effect of core-shell γ -Al₂O₃ nanorods on production of MeOH.