Studies on the Catalyst packing method in the fixed-bed reactor with inert material for Fischer-Tropsch synthesis

<u>홍기훈</u>, 정재선¹, 주가영¹, 양은혁¹, 노영수¹, 신설아¹, 박지인¹, 문동주^{1,†} 한국과학기술연구원/UST; ¹KIST (djmoon@kist.re.kr[†])

Recently there has been a revival of interest in eco-friendly fuels and alternative route for oil production. The Gas to Liquid (GTL) process is one of the promising technologies for clean energy production. In the GTL process, Fischer–Tropsch synthesis(FTS) reaction is a catalytic process that converts synthesis gas (CO + H_2) to hydrocarbon products. In this study, Ru/Co/Al₂O₃ catalysts were prepared by impregnation method and characterized by N₂ physisorption, XRD, and TGA analysis, and investigated in the fixed–bed reactor with inert material such as α -Al₂O₃. The experiment was carried out at different weight fraction and packing methods with FTS catalyst and inert material. The catalytic performace was evaluated by liquid fuel productivity under the same GHSV (Gas Hourly Space Velocity) and discussed the effect of inert material in catalyst packing method.