Synthesis and characterization of TiO₂ stabilized MgO based sorbents for CO₂ capture

<u>Hiremath Vishwanath</u>, 황순하, 서정길[†] 명지대학교 (jgseo@mju.ac.kr[†])

Mesoporous MgO-TiO₂ sorbents with different amount of magnesium and titanium were synthesized via cooperative self-assembly of the metal precursor and the soft template P123 triblock copolymer in ethanolic solution under acidic conditions. It was observed that, the phase was transformed in the order, MgTiO₃ (0.5–2.0) < MgO-MgTi₂O₄ (3.0–4.0) <MgO-Mg₂TiO₄ (>5.0) and the CO₂ adsorption increased in the order MgTiO₃ (0.5–2.0) <MgO-Mg₂TiO₄ (5.0) <MgO-Mg₂TiO₄ (4.0) < MgTi₂O₄ (3.0). For CO₂ capture application, formation of MgO-MgTi₂O₄ is beneficial analogous to MgAl₂O₄ spinal phase. In the process of CO₂ adsorption, high surface are (111.4m2/g), pore volume (0.45cm3/g) as well as appropriate basic sites of Mg-O-Ti makes it a plausible candidate for CO₂ adsorption. The results suggest that, the developed sorbent has good thermal stability, and recyclability. This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant number: NRF-2013R1A1A2060638).