A study on the low temperature SCR activity enhancement with the addition of tungsten of Mn– Ce–Ti catalyst

> <u>김동호</u>, 권동욱¹, 홍성창^{1,†}, 남기복¹, 최상현², 박광희², 김기왕² 경기대; ¹경기대 환경에너지공학과; ²(주)에코프로 (schong@kgu.ac.kr[†])

This study is performed on the reaction characteristics of the selective catalytic reduction (SCR) using ammonia for a removal of nitrogen oxides (NOx). Mn-Ce-W-Ti catalysts were prepared by a wet impregnation method. Tungsten loadings of catalysts were 0-10 wt.%. The SCR activity is increased to the maximum when it included 5 wt.% tungsten. But it showed a tendency to decrease when tungsten added more than that. The properties of the catalyst were evaluated using H2 temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). As a result, the Mn4+ and Ce3+ peaks increased with the addition of W in H2-TPR. Also, when the tungsten 5 wt.%, the ratio of Mn4+ and Ce3+ species present the highest. Thus, The ratio of Mn4+ and Ce3+ was comfimed an important factor on the reaction of low temperature SCR. (This subject is supported by Korea Ministry of Environment (MOE) as "Advanced Technology Program for Environmental Industry"(RE201411036))

Keywords : Mn, low temperature SCR, promotor, XPS