Effect of Soot in Diesel Oxidation Catalyst Supported on Microporous TiO2 over N2O formation

<u>이승관</u>, 조성준[†] 전남대학교 (sjcho@chonnam.ac.kr[†])

Emission of N_2O from the diesel oxidation catalyst employing microporous TiO_2 has been investigated in the presence of the soot. Here we have demonstrated that location of Pt catalyst supported on zeolitic microporous TiO_2 obtained from hydrothermal reaction of bulk TiO_2 at 430K in the presence of LiOH was found to be resulted in the superior catalytic performance compared to the Pt catalyst supported on alumina. Zeolitic microporous TiO_2 suppresses significantly the N_2O emission, while maintaining the excellent NO_X reduction. The results suggested that the interaction of the soot with the Pt based diesel oxidation catalyst facilitated the N_2O formation, which can be further accelerated when N is present in the soot. The use of zeolitic microporous TiO_2 provides a new way of preparing SCR catalyst with a high thermal stability and superior catalytic performance. It can be also extended further to the other catalytic system employing TiO_2 -based substrate.