Lithium silicate-based sorbents containing Li₂SiO₃ and LiAlO₂ for CO₂ capture at high temperature

<u>이승용</u>, 이수출, 권용목, 채호진, 조민선, 박용기¹, 서휘민¹, 김재창[†] 경북대학교; ¹한국화학연구소 (kjchang@knu.ac.kr[†])

Lithium silicate based sorbent was developed for CO₂ capture at high temperature between 550°C and 700°C. This sorbent (LS2A10) was prepared by physical mixing of Li₂CO₃ with SiO₂ in the molar ratio of 2:1 with 10wt% Al₂O₃. The CO₂ capture capacity of LS2A10 sorbent maintained 200 mg CO₂/g sorbent during multiple cycles. On the other hand traditional Li₄SiO₄ sorbent (LS2) which was prepared by physical mixing of Li₂CO₃ with SiO₂ in the molar ratio of 2:1 decreased CO₂ capture capacity from 227.1 to 51.2 mg CO₂/g sorbent during multiple cycles. From XRD analysis, we confirm formation LiAlO₂ and Li₂SiO₃ unlike LS2 sorbent. And from SEM analysis, we confirm that they prevent its aggregation. So we conclude that Al₂O₃ performed a key role in long term stability of this sorbent by making LiAlO₂ and Li₂SiO₃. From these results, we confirm that LS2A10 sorbent improved long term stability compared with LS2 sorbent.