Characteristics of Perovskite solar cell with ${\rm Al_2O_3}$ electron transfer layer formed by thermal evaporator

<u>안준섭</u>, 송재관, 한은미[†] 전남대학교 (emhan@jnu.ac.kr[†])

 Al_2O_3 electron transfer layer coating methods are ALD, sol-gel, nano-particle, and so on. In this study, we confirmed the electrical characteristics of Perovskite solar cell with Al_2O_3 ETL formed by thermal evaporation. Structure of the device was FTO / Al_2O_3 / $CH_3NH_3Pbl_3$ / spiro-OMeTAD / Ag. Al was deposited to 10, 20, 30nm on the FTO using a thermal evaporator and sintered in a furnace at 500 °C for 30 minutes to form an Al_2O_3 thin film. SEM images were taken to confirm the thickness change of the ETL. XPS measurement was performed to confirm the energy binding of Al_2O_3 , and the binding energy between the peak of Al_2D and the O1s was confirmed. Crystal structure of the Al_2O_3 ETL was hexagonal system, measured by XRD. Electrical characteristic was measured by solar simulator. Open circuit voltage were same all devices as 0.9V, the Perovskite solar cell which oxidized 10 nm Al device showed the highest photoelectric conversion efficiency.