SF₆ capture from gas mixtures using hydrate-based gas separation (HBGS)

<u>고 결</u>, 서용원[†] 울산과학기술원 (ywseo@unist.ac.kr[†])

This study is about hydrate-based SF_6 (sulfur hexafluoride) separation, which is one of the promising methods for SF_6 separation. The feasibility of hydrate-based SF_6 separation was investigated with a primary focus on structural, thermodynamic, and kinetic aspects. First, the structures of pure SF_6 and SF_6 (50%, 80%, and 90%) + N_2 hydrates were analyzed using powder X-ray diffraction (PXRD) and identified as structure II regardless of the gas compositions. Second, three-phase equilibria (hydrate (H)-liquid water (L_W)-vapor (V)) of SF_6 + N_2 hydrates were measured to determine stable conditions of SF_6 + N_2 hydrates. In addition, the dissociation enthalpy of SF_6 hydrates was measured via differential scanning calorimeter (DSC). Furthermore, the pressure-composition diagram at 275.15 K was obtained using gas chromatograph (GC) to examine SF_6 separation efficiency. Lastly, the gas composition changes and gas uptakes during hydrate formation were monitored to compare the rate of hydrate formation at different pressure conditions. The overall results of this research are expected to offer key parameters for developing hydrate-based SF_6 separation.