Solubility measurement of β-HNIW in binary solvent mixtures (ethyl acetate+ cyclohexane, ethyl acetate+ toluene)

<u>박인호</u>¹, 김광주^{1,2,†}, 김준형³ ¹한밭대학교; ²화학생명공학과; ³국방과학연구소 (kikim@hanbat.ac.kr[†])

The nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hex-aszaisowortzitane (HNIW or CL-20), is an powerful explosive compound which has an excellent stability, and environmentally friendly. And it is outstanding in comparison to other high energetic non-nuclear explosive materials such as HMX, RDX, PETN with respect to density, velocity of detonation. HNIW has four polymorphs, oh which usually existed as ϵ -HNIW and β -HNIW in organic solvent. Polymorph transformation is affected by supersaturation, temperature, solvent composition. Therefore solubility of β -HNIW in binary solvent mixtures should be measured in order to determine effect of supersaturation on polymorph transformation. Solubility of -HNIW in binary solvent mixtures (ethyl acetate + cyclohexane, ethyl acetate + toluene) at temperature range between 283.15 and 333.15K was measured by gravimetric method. β -HNIW in binary solvent mixtures is metastable form. So solubility was quickly measured before occur transformation. Solubility of β -HNIW in binary solvent mixtures was decreasing with increasing temperature and mole fraction of cyclohexane, toluene at temperature range between 283.15 and 333.15K.