Enhancement of Viral Titers for Vectors Encoding shRNA^{miR}s via DROSHA Knockout

<u>박희호</u>^{1,2}, Robinson Triboulet², Martin Bentler³, Swaroopa Guda², Peng Du², Haiming Xu², Richard I. Gregory², Christian Brendel², David A. Williams^{2,†} ¹강원대학교, 화학생물공학부; ²Harvard Medical School, Boston, MA, USA; ³IEH, Hannover, Germany

RNAi-based gene therapy using shRNA^{miR} is a powerful approach to modulate gene expression. However, we have observed low viral titers with shRNA^{miR} vectors and hypothesized that this could be due to cleavage of viral genomic RNA by the endogenous microprocessor complex during virus assembly. We designed gRNA CRISPR/Cas9 constructs targeting *DROSHA* and successfully generated knockout (KO) HEK293T cells. We produced lentiviral vectors containing Venus with or without shRNA hairpins and generated virus using *DROSHA* KO packaging cells. We observed an increase in the hairpin-containing Venus transcripts in *DROSHA* KO consistent with reduced microprocessor cleavage of encoded mRNA transcripts, and recovery in the viral titer of hairpin vectors. We confirmed the absence of shRNA^{miR} processing by Northern blot and this correlated with an increase in the full-length vector genomic RNA. From rescue experiment, re-expression of WT DROSHA in *DROSHA* KO cells led to reduction in viral titer. These findings may have important implications in production of viral shRNA^{miR} vectors for RNAi-based therapy.