Electrochemical Biosensor Constituted of Bi_2Se_3 /Au/mDNA Hybrid Material for H_2O_2 Detection

<u>신민규</u>, 김동연, 모센, 최정우[†] 서강대학교 (jwchoi@sogang.ac.kr[†])

The hydrogen peroxide (H_2O_2) biosensor composed of the bismuth selenide nanoparticle $(Bi_2Se_3 NP)$, gold (Au) and eight silver-ion mediated double-stranded DNA (mDNA) is fabricated for enhancement of electrochemical signal and stability. For the first time, the synthesized $Bi_2Se_3 NP$ is immobilized uniformly on the gold electrode by self-assembly. Additionally, the Au layer is deposited on the $Bi_2Se_3 NP$ layer to increase the stability of the electrochemical signal (Bi_2Se_3/Au). Then, to detect H_2O_2 , the mDNA is immobilized on the Bi_2Se_3/Au layer by Au-thiol bonding ($Bi_2Se_3/Au/mDNA$). The immobilized Bi_2Se_3 induces the efficient electron transfer to the mDNA and Au electrode. To investigate H_2O_2 detection performance of the fabricated biosensor in real sample, the phorbol 12-myristate 13-acetate (PMA) is treated to the two breast cancer cell. The prepared biosensor successfully classifies two breast cancer cell through the amount of released H_2O_2 . The fabricated biosensor provides the high electrochemical signal compared to the biosensor for high selectivity and low detection limit.