The influence of Cu–loading on the activity and stability over co–precipitated Cu–Ce $_{0.8}$ Zr $_{0.2}$ O $_2$ Catalyst for the LT–WGS reaction

<u>김태광</u>, 구윤정¹, 정대운^{2,†} 창원대학교; ¹창원대학교 친환경해양플랜트FEED공학; ²창원대학교 토목환경화공융합공학부 (dwjeong@changwon.ac.kr[†])

A single stage water–gas shift reaction (WGS: CO + $H_2O \rightarrow CO_2 + H_2$) is crucial step in a fuel processor for compact fuel cell systems. The Cu loading of a cubic $Ce_{0.8}Zr_{0.2}O_2$ – supported Cu catalyst was optimized for a single–stage WGS reaction. The cubic phase of Cu–Ce_{0.8}Zr_{0.2}O₂ catalyst showed the highest CO conversion as well as stability with time on stream due to high oxygen storage capacity. The remarkable catalytic performance of Cu–Ce_{0.8}Zr_{0.2}O₂ is mainly ascribed to the synergy effect of Ce_{0.8}Zr_{0.2}O₂ solid solution, resulting from high Cu dispersion, and enhanced reducibility of catalyst. Furthermore, Cu– loading on the CeO₂–ZrO₂ structure improved the redox properties of the material and restricted the metal sintering, leading thus to a further improvement in the catalytic performance. In the present study, we focus on the optimum loading of Cu over cubic Ce_{0.8}Zr_{0.2}O₂ support to further improve the performance of the catalyst.