Highly efficient H₃PO₄ treated CuS counter electrodes for improving photovoltaic performance of quantum dot sensitized solar cells

<u>Mohammed Panthakkal Abdul Muthalif</u>, 최영선[†], 박주미, 박한규, 최지훈 부산대학교 (choe@pusan.ac.kr[†])

This study describes the effect of H_3PO_4 treatment on CuS counter electrodes (CEs) to enhance the photovoltaic performance of quantum dot sensitized solar cells (QDSSCs). The chemical bath deposition (CBD) method was used to prepare H_3PO_4 treated CuS CEs and solar cell device fabricated with the help of TiO₂/CdS/CdSe/ZnS photoanodes and polysulfide electrolytes. The structural, optical, and electrochemical properties of the prepared samples were analyzed using scanning electron microscope, UV-visible spectrophotometer, and impedance spectroscopy. The photovoltaic parameters showed significant improvement after the addition of H_3PO_4 on CuS thin film surface. The catalytic activity of prepared samples was evaluated using cyclic voltammetry and the results shows that H_3PO_4 treated CuS CEs can effectively catalyze the reduction of polysulfide electrolyte.