Gas hydrate-based CO_2 capture from flue gas: Investigation of structural transformation and formation kinetics of 3,3-dimethyl-1-butanol + CO_2 hydrate

<u>이윤석</u>, 문석윤, 이승인, 박영준[†] 광주과학기술원 (young@gist.ac.kr[†])

With global warming, various CO_2 capture technologies have been investigated so far. Among the options, gas hydrate-based CO_2 capture is recognized as an emerging technology due to the advantage of low regeneration energy consumption. Gas hydrate is a nonstoichiometric inclusion compound forming the well-known three structures, sI, sII and sH. Among the structures of gas hydrate, sH hydrate exhibits promising CO_2 capture capacity. In this study, we investigated the 3,3-dimethyl-1-butanol (DMB) hydrate with different N_2 : CO_2 mixed gas ratios to reveal the structure transformation between sI and sH hydrates. Based on the high resolution powder diffraction(HRPD) analysis and phase equilibria measurement, the structural transition points from sI to sH hydrate were verified. In order to estimate the potential application to the post-combustion CO_2 capture process, kinetic patterns of the sH hydrate were also explored focusing on gas uptake, induction time, and separation factor.