Comparison of the performance of chemical looping combustion process using Fe-Mn low-cost particles

<u>손남규</u>, 도정연, 박노국, 백점인¹, 류호정², 강미숙[†] 영남대학교; ¹한국전력연구원; ²한국에너지기술연구원 (mskang@ynu.ac.kr[†])

In Chemical Looping combustion, a redox reaction occurs in two separate reactors. As a result, $\rm CO_2$ can be separated from the process without any additional $\rm CO_2$ capture facility, and $\rm NO_x$ generated during the high temperature combustion process is blocked, and combustion efficiency is also high. In this study, Fe-Mn-based particles using Al2O3 as a support were used for the experiment. In the case of Fe, Fe²⁺ is not effective in the reaction with methane, but Fe³⁺ is very effective for oxygen transfer. Therefore, the precursor was composed of $\rm Me^{3+}$ containing oxides, and the spinel structure, which is structurally stable $\rm Me^{3+}$, was formed and used. Particle efficiency was analyzed by TGA and XPS was used to analyze the oxidation state. XRD, SEM/EDS, and CV were used for analysis of other physicochemical properties. Thus, it was confirmed that sufficient oxygen transfer ability was obtained even if low cost particles were used.