The Effect of La_2O_3 content on Ni- La_2O_3 -Ce_{0.8}Zr_{0.2}O₂ Catalysts for low temperature Steam Reforming of Methane

Ni–La₂O₃–Ce_{0.8}Zr_{0.2}O₂ catalysts with different La₂O₃ content has been applied to low temperature steam reforming of methane. The catalysts are prepared by co–precipitation method. To understand the physicochemical properties of catalysts, various techniques has been carried out such as BET, XRD, TPR, H₂–chemisorption. BET surface area, Ni dispersion, crystallite size of Ni, and reducibility are strongly dependent on the La₂O₃ content. Among the prepared catalysts, Ni–La₂O₃–Ce_{0.8}Zr_{0.2}O₂ catalyst which is contained 70 wt.% La₂O₃ shows the highest CH₄ conversion (X_{CH4} > 53.3%). This result is mainly due to high Ni dispersion, small crystallite size of Ni and high reducibility.