Heterogeneous enantioselective hydrogenation over chirally modified Pt/SiO₂

<u>윤용주</u>^{1,2,†}, 김정명^{1,2}, 송병주^{1,2} ¹포항공과대학교; ²화학공학과 (yjyun@postech.ac.kr[†])

Homochirality of life on Earth has significant implications in the production of pharmaceutical compounds. Development of effective catalysts for the production of enantiomerically pure compounds could have a huge impact on pharmaceutical industry. Heterogeneous enantioselective catalysts provide significant advantages in applications such as easy separation from products and high reusability. Here, we present catalytic performance of cinchonidine-modified Pt/SiO_2 catalysts for enantioselective hydrogenation of ethyl pyruvate. They were prepared via a facile impregnation of Pt on MCM-41, SBA-15, KIT-6 and MCF. Under 1 bar of hydrogen pressure, the prepared 1 wt% Pt/SiO_2 catalysts show 80~90% of enantiomeric excesses with preference of (R)-ethyl lactate. These are comparable or higher than that obtained from 5 wt% Pt/Al_2O_3 , one of the most efficient catalysts for asymmetric hydrogenation of ethyl pyruvate. Moreover, the Pt/SiO_2 catalysts exhibit no significant loss in activity and enantioselectivity for repeated cycles of reaction. These results reveal that Pt/SiO_2 catalysts are promising for enantioselective hydrogenation.