Spray pyrolysis synthesis of γ -Al $_2$ O $_3$ supported metal phosphide and their catalytic activity on hydrodeoxygenation of 2-furyl methyl ketone <u>임경민</u>¹, Hoang Vu Ly^{2,1}, 김승수², 유성종³, 김진수^{1,†} ¹경희대학교; ²강원대학교; ³한국과기술연구원 (ikim21@khu.ac.kr[†]) In this study, spherical γ -Al $_2$ O $_3$ supported metal phosphide (CuP, MoP, and FeP) catalysts were successfully prepared by combining sol-gel and spray pyrolysis methods. First boehmite sol was prepared by a Yoldas-process and then the corresponding metal salts and phosphorus precursor were added to the sol at the desired concentration, followed by spray pyrolysis of the mixed solution. As the well-mixed solution was transformed to spherical γ -Al $_2$ O $_3$ supported metal phosphide catalysts druring spray pyrolysis process, the metal phoshide species were uniformly distributed on the mesoporous γ -Al $_2$ O $_3$ supports. The product catalysts were investigated under different conditions for hydrodeoxygenation of bio-oil model compound, 2-furyl methyl ketone (FMK), which is the main component of the bio-oil product from pyrolysis of Saccharina japonica. Among the investigated catalysts, the 5 wt% Fe $_2$ P/ γ -Al $_2$ O $_3$ catalyst after calcination at 600 °C showed the highest FMK conversion and selectivity at the reaction temperature of 400 °C.